

BJet Tagging: DCA3d

Jin Huang(BNL), Haiwang Yu (NMSU)

2016-09-20

Refitting procedure

These was done using PHG4TrackKalmanFitter module in g4hough

dca2d before and after genfit refit

Before refit

After Refit

dca2d

dca2d compared with dca2d from strait line calculation

dca2d error

track-by-track dca2d/error

dca2d/error vs. pT

These refit results uses truth vertex(0,0,0) and zero errors for the vertex to isolate the DCA error itself. Same procedure used for the DCA3d plots.

dca3d calculation in GenFit

- GenFit can propagate a track to POCA (point of closest approach) of a designated point.
- The states at POCA is defined on a plane that go through the designated point, and perpendicular to the track momentum.
- A GenFit state is (1/p, u', v', u, v).
- dca3d := sqrt(u²+v²)
- dca3d_error := sqrt(cov(u,u) + cov(v,v)) → correlation between u and v ignored.

- n is the mom direction
- u always has one dimension set to be 0. could be x, y or z.
- u, v correlation is 3 4 magnitude smaller than their own error.

dca3d

dca3d compared with strait line calculation

dca3d/error

Backups:

10 events: simulation + BJetModule X 2 = 2min

1000 events: 200min